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Abstract—In this paper, we propose a deep video compression
method for P-frame in sub-sampled color spaces regarding the
YUV420, which has been widely adopted in many state-of-art
hybrid video compression standards, in an effort to achieve
high compression performance. We adopt motion estimation and
motion compression to facilitate the inter prediction of the videos
with YUV420 color format, shrinking the total data volume of
motion information. Moreover, the motion compensation module
on YUV420 is cooperated to enhance the quality of the compen-
sated frame with the consideration of the resolution alignment
in the sub-sampled color spaces. To explore the cross-component
correlation, the residual encoder-decoder is accompanied with
two head-branches and color information fusion. Additionally, a
weighted loss emphasizing more on the Y component is utilized
to enhance the compression efficiency. Experimental results show
that the proposed method can realize 19.82% bit rate reductions
on average compared to the deep video compression (DVC)
method in terms of the combined PSNR and predominant gains
on the Y component.

Index Terms—Deep learning, learned video compression, P-
frame, sub-sampled color spaces.

I. INTRODUCTION

W Ith the rapid development of the Internet and digital
devices, video data volumes have been tremendously

increased, bringing substantial challenges to video coding
technologies. During the past several decades, the video coding
has been significantly evolved based on the hybrid video
coding framework, which is typically constituted with the
prediction, transform, quantization and entropy coding. The
video coding standards, such as the high efficiency video
coding (HEVC) standard [1], the audio and video coding
standard (AVS) [2], and the versatile video coding (VVC)
standard [3], realize considerable breakthroughs regarding the
compression performance, flourishing the further development
of the video-oriented applications.

The surging of the deep neural networks impels the ex-
ploration of the learning based compression schemes [4].
Existing works regarding the learning based compression can
be classified into two categories. The first category replaces the
conventional coding module with the deep neural network to
enhance the representation capability, which still relies on the
hybrid coding framework. In particular, deep neural networks
are used to create new intra prediction modes [5] [6] [7], such
that the prediction accuracy could be improved. Regarding
inter prediction, the deep learning is cooperated to improve
the motion estimation precision [8] [9]. To further remove
the statistical redundancies, the deep learning based entropy
coding method [10] has been proposed, leveraging the deep
neural network to estimate the probability distribution of

residuals, such that the coding performance could be enhanced.
Deep learning based loop filtering methods [11] [12] [13] [14]
intend to eliminate the compression degradation by learning
an enhancement model on the distorted patches. However,
existing methods mainly focus on an individual module in
the hybrid video coding framework and the visual signal
representation pipeline has been insufficiently utilized.

The second category achieves compression with end-to-end
learning framework where the recurrent neural network, con-
volutional neural network, as well as the generalized divisive
normalization layer are delicately cooperated, converting the
visual signals to the latent-code with non-linear transform.
End-to-end based image compression [15] [16] has succes-
sively surpasses the traditional image coding, such as the
JPEG2000, the HEVC, and the VVC. However, employing
the end-to-end learning network to compress the video is still
a challenging task, as the coding procedure is more intri-
cate, bestowing spaces for further investigation. Deep Video
Compression (DVC) [17] is the first fully end-to-end video
coding framework, which imitates the functionality of the
modules in traditional hybrid coding framework and replaces
all components with deep neural networks. In [18], the motion
information and residual information are jointly optimized and
compressed, leading to further reductions of the coding bits. A
3D auto-encoder with auto-regressive prior is utilized in [19]
to enhance the entropy estimation. In [20], multiple reference
frames and motion information are used in the end-to-end
framework to produce better prediction of the current frame,
leading to more compact residuals between prediction and
current frame. In [21], error propagation and content-aware
end-to-end video coding framework have been proposed to
improve the coding performance by applying rate-distortion
criterion to update network weights.

It has been widely recognized that the YUV color space
enjoys significant benefits regarding the energy concentration,
making it prevalent in displaying, transmission and the tra-
ditional video compression. Human visual system is more
sensitive to luma component, such that the luma component
is provided with finer coding strategies in traditional video
coding. In this manner, the chroma component could be down-
sampled to reduce visual redundancy. However, most of the
existing end-to-end compression methods are implemented in
the RGB color spaces. Egilmez et al. [22] proposed a learning
based image compression framework for sub-sampled color
spaces, which could not be directly applied to video compres-
sion. As such, the compression potentials with the YUV420
color format are still inadequately excavated. Moreover, tra-



Fig. 1. Illustration of the framework of the proposed method.

Fig. 2. Illustration of the motion estimation for the videos with YUV420
color format.

ditional video compression standards primarily pursue higher
coding performance in sub-sampled color spaces instead of
the RGB color spaces in the sense of rate and distortion. The
performance gap between learned video compression and the
state-of-art traditional video coding standards has not been
illustrated sufficiently.

In this paper, we propose an end-to-end video compression
method for P-frame in sub-sampled color spaces with the
contributions summarized as follows:

• We introduce the motion estimation and motion encoder-
decoder on YUV420 to produce compact optical flow
for Y, U and V components. Furthermore, we present
the motion compensation with resolution alignment and
enhancement on each component.

• We apply the residual encoder-decoder with the consid-
eration of cross-component correlation. A proper loss
function emphasizing the importance of the Y component
is utilized.

• Experimental results demonstrate that the proposed
method could improve the previous end-to-end video
compression method in sub-sampled color spaces.

II. PROPOSED METHOD

A. Framework

The framework of the method in this work is shown in
Fig. 1, which follows the hybrid P-frame coding structure
in DVC [17]. The method focuses on the sub-sampled color
space regarding the Y, U and V with 4:2:0 color format.

A series of compression modules are elegantly devised to
facilitate the compression of the videos in YUV420 color
format. When compressing the current frame xt, the optical
flow vt between the current frame and the previous decoded
frame x̂t−1 is firstly calculated through a motion estimation
module. Subsequently, the vt is compressed through the mo-
tion encoder. Then, inter frame prediction is conducted for
the current frame by referring the reconstructed optical flow
v̂t and the reference frame through the motion compensation
module, generating the predicted frame x̄t. The residual rt
between the current frame and predicted frames is calculated
and passed over to the residual codec, wherein the residual
encoder transforms the rt to the residual latent code yt. The
bit rate of the quantized residual latent code ŷt is estimated. At
the last stage, the reconstructed residuals r̂t and the prediction
signal x̄t are combined to generate the reconstruction x̂t of the
current frame, which could serve as the reference frame for
the subsequent coding frame.

B. Motion Estimation and Compression with YUV420

Motion estimation is built upon the the SPYNET [23] to
generate the optical flow for the video with YUV420 color
format. The Y, U and V components of the current input frame
xt are denoted as Yt, Ut and Vt, respectively. Moreover, the
Y, U and V components of the associated reference frame are
denoted as Ŷt−1, Ût−1, V̂t−1, respectively. As shown in Fig. 2,
Ut, Vt and Ut−1, Vt−1 are upsampled to align to the resolution
of the luma channel. SPYNET computes the optical flow vt
between the concatenation of Yt, Ut, Vt and the concatenation
of Ŷt−1, Ût−1, V̂t−1. The optical flow vt, which is with the
same resolution as the luma channel, is fed to motion encoder.
The motion encoder is composed of convolutional layers and
generalized divisive normalization (GDN) layers, as illustrated
in Fig. 3. The motion decoder consists with deconvolutional
layers and inverse GDN layers, synthesising the quantized
latent code to reconstruct the optical flow v̂t.

C. Motion Compensation on YUV420

Motion compensation aims at enhancing the quality of
the warping frame. More specifically, the warping frame is
generated from the reconstructed optical flow v̂t and the



Fig. 3. Illustration of the motion encoder and decoder.

associated reference frame. As depicted in Fig. 4, the warping
frame and the reconstructed optical flow frame v̂t are fed to
the enhancement network to compensate the luma channel.
Regarding the chroma components, the downsampled optical
flow is utilized to yield the warping frame. The warping result
concatenated with the downsampled optical flow is subject to
the enhancement network to enhance prediction.

D. Residual Encoder-Decoder on YUV420

The residuals of Y, U, and V components are calculated
separately. To support the compression of YUV420 color
format, the residual compression method utilizes two head-
branches to deal with the luma and the chroma components.
As shown in Fig. 5, to align the resolution of the features
extracted from different branches, the dimension of the luma
map will be reduced and the resolution of the chroma map
remains unchanged. For exploiting the relationship between Y
and UV components, the 1×1 convolutional layer is utilized
and the features combined the cross-component information
are passed to the main body of the residual encoder. At the
last stage of the residual decoder, the reconstructed features
are split into two branches to produce the reconstructed Y, U
and V components.

E. Bit rate Estimation

Bit rate estimation is essential in the end-to-end com-
pression framework. The mean-scale entropy model in [24]
is employed in the proposed method, which assumes the
distribution of the quantized latent code in each channel and
position follows the Gaussian distribution with its specific
mean and scale. Within such assumption, the entropy of the
quantized latent code could be calculated, such that the coding
bit rate could be estimated.

III. EXPERIMENTAL RESULTS

A. Experiments Setup

The proposed method is developed upon the Compres-
sAI [25] project, which is a Pytorch library for learning based
compression. The Vimeo-90k [26] is served as the training
dataset wherein videos in RGB color format are converted to

Fig. 4. Illustration of the motion compensation module.

Fig. 5. Illustration of the residual encoder and decoder.

the YUV420 format by FFmpeg [27]. The proposed end-to-
end compression networks are systematically trained with the
YUV420 video data. More specifically, we separately pre-train
the motion estimation module, motion encoder-decoder, as
well as the residual encoder-decoder. Then, all the modules are
combined and jointly trained from the pre-trained parameters,
aiming to minimize the loss function considering the distortion
and the rate, which can be described as follows,

L = λD +R, (1)

where D denotes the coding distortions which are measured
by the weighted mean square error (MSE) of the Y, U and V
components as follows,

D = (6MSEY +MSEU +MSEV )/8. (2)

R denotes the bit rate which can be calculated as the com-
bination of the motion bit rate Rmv and the residual bit rate
Rres,

R = Rmv +Rres. (3)

Herein, λ is used to balance the penalty of the coding distortion
and the bit rate consumption, where multiple rate points can
be achieved by adjusting the λ. In particular, four models are
prepared with different λ values {0.05, 0.025, 0.00625 and
0.0025}, aligning to the bit rate realized by the released models



TABLE I
PERFORMANCE COMPARISONS IN TERMS OF BD-RATE (ANCHOR: DVC).

Sequence DVC Proposed YBDBR CBDBRBitrate YPSNR UPSNR VPSNR CPSNR Bitrate YPSNR UPSNR VPSNR CPSNR

Validation1

6257.65 42.52 46.59 50.40 44.02 2973.78 43.48 42.55 46.3 43.71

-62.14% -33.17%3271.28 41.59 45.83 49.49 43.1 1565.67 42.28 42.21 44.31 42.53
1748.99 40.58 44.99 48.45 42.11 691.73 40.47 40.41 44.05 40.91
1045.59 39.05 44.06 47.07 40.68 380.66 38.39 40.96 43.92 39.40

Validation2

5963.40 42.06 50.83 52.05 44.41 5231.51 43.28 44.26 46.46 43.80

-17.71% 27.62%3634.89 40.85 49.66 50.89 43.20 3460.61 41.59 43.33 45.34 42.28
2351.91 39.56 48.14 49.63 41.89 1767.89 38.99 41.80 44.39 40.01
1489.09 37.86 46.68 48.07 40.24 1067.71 36.71 41.31 44.05 38.20

Validation3

8356.04 41.76 48.16 50.58 43.66 7137.31 43.02 42.93 45.27 43.29

-13.10% 21.36%5192.01 40.50 47.16 49.56 42.47 4972.11 41.40 42.11 43.49 41.75
3524.84 39.27 45.77 48.35 41.21 2665.48 38.12 39.61 42.45 38.84
2299.93 37.53 44.68 47.00 39.60 1697.45 35.57 38.57 40.89 36.61

Validation4

10258.34 42.72 47.56 45.76 43.71 7024.19 45.22 40.94 40.35 44.08

-37.89% -17.32%6414.99 41.94 46.27 44.37 42.79 5050.21 43.58 40.01 38.58 42.51
4808.69 40.43 44.25 42.35 41.14 2873.73 40.13 37.74 36.17 39.33
2974.44 39.11 42.56 40.67 39.74 1958.39 37.26 33.84 32.78 36.27

Validation5

12068.61 35.86 44.43 42.43 37.75 11907.19 39.52 39.63 38.83 39.45

-71.27% -43.23%6450.48 34.76 44.00 41.79 36.79 7718.11 37.11 38.81 38.19 37.46
4270.31 33.82 42.67 40.78 35.80 2528.43 33.43 38.48 37.69 34.59
2607.11 32.85 41.99 40.11 34.90 5384.39 30.52 36.43 35.61 31.90

Validation6

3681.78 37.65 51.63 51.58 41.14 2452.39 45.77 45.17 48.53 46.04

—— -84.23%2296.61 37.37 50.40 49.56 40.53 1682.48 43.21 44.83 45.89 43.75
1436.93 37.15 50.07 50.19 40.39 772.81 41.24 43.16 46.10 42.09
931.24 36.63 49.13 48.58 39.69 439.43 38.95 43.75 46.54 40.50

Validation7

10316.64 36.04 43.69 47.20 38.39 9581.96 40.85 42.35 42.71 41.27

-49.27% -31.49%6385.37 35.29 43.16 46.17 37.64 6227.64 38.63 41.53 41.77 39.38
4144.63 34.42 42.48 44.70 36.71 2969.19 35.45 39.73 40.26 36.59
2600.34 32.53 41.07 42.65 34.86 1724.63 33.15 38.82 39.53 34.66

Validation8

5273.74 37.12 48.35 50.02 40.14 3107.20 44.50 43.65 46.01 44.58

—— -69.02%3127.13 36.74 47.64 49.24 39.66 2117.35 42.25 42.9 44.19 42.57
1976.46 36.31 46.70 48.37 39.12 1083.18 39.72 41.39 43.90 40.45
1308.83 35.38 45.39 46.74 38.05 653.76 37.39 41.44 43.46 38.66

Validation9

6742.93 42.07 50.73 49.35 44.07 5880.32 43.35 44.43 44.49 43.62

-4.61% 30.30%4448.27 40.99 49.70 48.24 42.99 4046.11 41.06 43.26 42.51 41.51
2995.89 39.52 48.33 46.49 41.49 2189.70 37.89 40.83 40.65 38.60
1988.04 37.93 47.05 44.72 39.92 1314.80 35.20 41.54 40.13 36.61

Validation10

3892.08 45.13 52.29 52.73 46.97 2415.66 46.69 45.11 46.95 46.53

-42.39% 0.98%2430.19 44.39 51.54 51.64 46.19 1485.89 44.89 44.81 45.27 44.92
1493.41 43.38 50.60 50.18 45.13 698.50 42.38 42.70 44.76 42.72
989.93 42.11 49.08 48.67 43.80 408.01 39.81 43.79 44.86 40.94

Avg. -19.82%

of OpenDVC [28]. It is worth mentioning that the OpenDVC
exhibits similar performance to the reported results in [17].
The distortion loss D represents the weight sum of the MSE
of Y, U and V components.

B. Performance Comparisons with DVC

The testing sequences from Validation1 to Validation10 are
provided by the Grand Challenge on Neural Network-based
Video Coding in ISCAS 2022. The compression performances
are measured by utilizing the component-wise BD-Rate [29]
on the combined PSNR,

CPSNR = (6Y PSNR+ UPSNR+ V PSNR)/8. (4)

The group of pictures (GoP) is set to 10, which is identical
to the DVC configuration. Moreover, the I frame in each
GOP is encoded by VVC Test Model version 14.0 (VTM-
14.0) [30] under the AI configuration. The proposed method
is responsible for the P-frame compression, where the first
32 frames of each sequences are involved for test. As shown
in Table I, the proposed method achieves 19.82% BD-Rate
reductions on average in terms of CPSNR when compared
with the DVC method. The proposed method outperforms
DVC in the Y component for all sequences, especially on
Validation6 and Validation8, where the associated BD-Rate
could not be measured since the YPSNR at the lowest bit

rate of the proposed method is larger than the YPSNR at the
highest bit rate of DVC, indicating the superior performance
of the proposed method on the luma component. It is worth
noting that the proposed method may be inferior to DVC on
some sequences regarding the chroma components.

IV. CONCLUSIONS

In this paper, a deep video compression framework for P-
frame in sub-sampled color spaces has been designed. Succes-
sive modules which adapt to the YUV420 format have been
systemically built and jointly optimized under the constraint
of a proper weighted loss function, leading to the improvment
of the compression performance. The motion estimation in
sub-sampled color spaces is performed to obtain the motion
information between frames, which is further compressed by
a delicate motion encoder-decoder to release the transmission
overhead. The decoded motion information and the previous
decoded frame are leveraged by motion compensation module
to produce pleasing prediction. The residual encoder-decoder
utilizes and fuses cross-components information to realize the
superior residual compression in sub-sampled color spaces.
Experimental results show that the proposed method has
improved the coding performance when compared to the DVC.
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